SPANN: annotating single-cell resolution spatial transcriptome data with scRNA-seq data
The rapid development of spatial transcriptome technologies has enabled researchers to acquire single-cell-level spatial data at an affordable price. However, computational analysis tools, such as annotation tools, tailored for these data are still lacking. Recently, many computational frameworks have emerged to integrate single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics datasets. While some frameworks can utilize well-annotated scRNA-seq data to annotate spatial expression patterns, they overlook critical aspects. First, existing tools do not explicitly consider cell type mapping when aligning the two modalities. Second, current frameworks lack the capability to detect novel cells, which remains a key interest for biologists.