Spatial pattern and differential expression analysis with spatial transcriptomic data

Fei Qin, Xizhi Luo, Bo Cai, Feifei Xiao, Guoshuai Cai
bioRxiv (2023)


The emergence of spatial transcriptomic technologies has opened new avenues to investigate gene activities while preserving the spatial context of tissues. Utilizing data generated by such technologies, the identification of spatially variable (SV) genes is an essential step in investigating tissue landscapes and biological processes. Particularly in typical experimental designs such as case-control or longitudinal studies, identifying SV genes between groups is crucial for discovering significant biomarkers or developing targeted therapies for diseases. However, current methods available for analyzing spatial transcriptomic data are still in their infancy, and none of the existing methods are capable of identifying SV genes between groups. To overcome this challenge, we developed SPADE for spatial pattern and differential expression analysis to identify SV gene in spatial transcriptomic data. SPADE is based on a machine learning model of Gaussian process regression with a gene-specific Gaussian kernel, enabling the detection of SV genes both within and between groups. Through extensive simulations and real data analyses, we have demonstrated the superior performance of SPADE compared to existing methods in detecting SV genes within and between groups. The SPADE source code and documentation are publicly available at